Frecuencia absoluta – Definición, qué es y concepto | Diccionario Economico

Definición de Frecuencia absoluta – Definición, qué es y concepto | Diccionario Economico

La frecuencia absoluta se refiere al número total de veces que ocurre un evento o valor específico en un conjunto de datos. Es un concepto utilizado en estadística para analizar y representar la distribución de datos de manera cuantitativa. Se calcula contando el número de ocurrencias de cada valor y puede ayudar a identificar patrones y tendencias en los datos.

La frecuencia absoluta es ampliamente utilizada en estadística descriptiva y es útil para conocer las características de la población y/o muestra. Esta medida se puede utilizar con variables cualitativas o cuantitativas si se pueden ordenar.

La frecuencia absoluta se puede utilizar para variables discretas (variables ordenadas de menor a mayor) y para variables continuas (variables ordenadas de menor a mayor, agrupadas por intervalos). La frecuencia absoluta se utiliza para calcular la frecuencia relativa.

La suma de las frecuencias absolutas es igual a la cantidad total de datos en la muestra o población.

Probabilidad de frecuencia de frecuencia acumulada

Un ejemplo de frecuencia absoluta (fi) para una variable discreta

Suponga que las calificaciones de 20 estudiantes de primer año en economía son las siguientes:

1, 2, 8, 5, 8, 3, 8, 5, 6, 10, 5, 7, 9, 4, 10, 2, 7, 6, 5, 10.

A primera vista, se puede ver que de 20 valores, 10 son diferentes y el resto se repiten al menos una vez. Para desarrollar una tabla de frecuencias absolutas, primero se deben ordenar los valores de menor a mayor, y se calculará una frecuencia absoluta para cada uno.

Por lo tanto tenemos:

Xi = Variable aleatoria estadística, puntaje USE de primer año en economía.

nº = 20

fi = frecuencia absoluta = el número de repeticiones del evento (en este caso, la puntuación del examen).

Sifi
11
22
31
41
54
62
72
83
91
103
veinte

Como puede ver, la suma de todas las frecuencias absolutas es igual a la suma de los datos utilizados en el experimento (en este caso, este es el número total de estudiantes, igual a 20).

Frecuencia absoluta total

Un ejemplo de frecuencia absoluta para una variable continua

Suponga que la altura (medida en metros) de 15 personas que solicitan puestos en la policía nacional es la siguiente:

1.82, 1.97, 1.86, 2.01, 2.05, 1.75, 1.84, 1.78, 1.91, 2.03, 1.81, 1.75, 1, 77, 1.95, 1.73.

Para crear una tabla de frecuencias, los valores se ordenan de menor a mayor, pero en este caso, dado que la variable es continua y puede tomar cualquier valor en un espacio continuo infinitamente pequeño, las variables deben agruparse por intervalos.

Así tenemos:

Xi = valor aleatorio estadístico, el crecimiento de los solicitantes de servicio en la policía nacional.

Nº = 15

fi = Frecuencia absoluta = Número de repeticiones del evento (en este caso, alturas que se encuentran dentro de un determinado intervalo).

Sifi
[170180)[170180)[170180)[170180)5
[180190)[180190)[180190)[180190)4
[190200)[190200)[190200)[190200)3
[200210)[200210)[200210)[200210)3
quince

Variable estadística Frecuencia relativa acumulada

¿Problemas o dudas? Te ayudamos

Si quieres estar al día, suscríbete a nuestra newsletter y síguenos en Instagram. Si quieres recibir soporte para cualquier duda o problema, no dude en ponerse en contacto con nosotros en info@wikieconomia.org

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Scroll al inicio